skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scharen, Danielle R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article portrays how citizen science (CS) projects can be integrated into elementary classrooms to enhance students’ sensemaking skills and connect to real-world science problems. For the last several years, we have been involved in a study, Teacher Learning for Effective School-Based Citizen Science (TL4CS), that developed materials for elementary school teachers to engage their students in data collection, analysis, and interpretation for two existing CS projects: Community Collaborative Rain, Hail, and Snow Network (CoCoRaHS) and the Lost Ladybug Project (LLP). After piloting the TL4CS materials for two years, two teachers, Penny and Amy, share the ways they used the materials to create rich sensemaking experiences for their students. Penny used our TL4CS CoCoRaHS materials to make connections between their daily precipitation data and local weather phenomena, patterns in ecosystems, and student-created graphs. Amy used our TL4CS LLP materials to explore students’ questions about human impact on animals’ habitats and discover the importance of biodiversity in ecosystems. As demonstrated by Penny’s and Amy’s stories, the TL4CS materials can transform mere data collection for CS projects into opportunities for real-world connections and sensemaking in science classrooms. 
    more » « less
    Free, publicly-accessible full text available July 4, 2026
  2. School-based citizen science (SBCS) can promote mathematics and science integration in elementary classrooms. The "Teacher Learning for Effective School-Based Citizen Science" (TL4CS) project created materials to support teachers' use of SBCS. One teacher shares her experiences using TL4CS materials designed for the weather-focused CoCoRaHS project to teach mathematics and science. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. IntroductionElementary teachers face many challenges when including reform-based science instruction in their classrooms, and some teachers have chosen to enhance their science instruction by introducing students to citizen science (CS) projects. When CS projects are incorporated in formal school settings, students have an opportunity to engage in real-world projects as they collect and make sense of data, yet relatively few CS projects offer substantial guidance for teachers seeking to implement the projects, placing a heavy burden on teacher learning. MethodsFramed in theory on teacher relationships with curricula, we prepared science standards-aligned educative support materials for two CS projects. We present convergent mixed methods research that examines two teachers’ contrasting approaches to including school-based citizen science (SBCS) in their fifth-grade classrooms, each using support materials for one of the two CS projects. Both are veteran teachers at under-resourced Title 1 (an indicator of the high percentage of the students identified as economically disadvantaged) rural schools in the southeastern United States. We document the teachers’ interpretations and use of SBCS materials for the CS projects with data from classroom observations, instructional logs, teacher interviews, and student focus groups. ResultsOne teacher adapted the materials to include scaffolding to position students for success in data collection and analysis. In contrast, the second teacher adapted the SBCS support materials to maintain a teacher-centered approach to instruction, identifying perceptions of students’ limited abilities and limited instructional time as constraining factors. DiscussionWe discuss the intersection of CS projects in formal education and opportunities for engaging students in authentic science data collection, analysis, and sense-making. The two teachers’ stories identify the influences of school context and the need for teacher support to encourage elementary teachers’ use of SBCS instruction to supplement their science instruction. 
    more » « less